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We have implemented an efficient and scalable web cluster named LVS-CAD/FC (i.e. LVS with Content-
Aware Dispatching and File Caching). In LVS-CAD/FC, a kernel-level one-way content-aware web switch
based on TCP Rebuilding is implemented to examine and distribute the HTTP requests from clients to web
servers, and the fast Multiple TCP Rebuilding is implemented to efficiently support persistent connection.
Besides, a file-based web cache stores a small set of the most frequently accessed web files in server RAM
to reduce disk I/Os and a light-weight redirect method is developed to efficiently redirect requests to this

IC(ZJ;I‘;V:;?_ Sl;ased request distribution cache. In this paper, we have further proposed new policies related to content-based workload-aware
Web cluster q request distribution, in which the web switch considers the content of requests and workload character-

ization in request dispatching. In particular, web files with more access frequencies would be duplicated
in more servers’ file-based caches, such that hot web files can be served by more servers. Our goals are to
improve cluster performance by obtaining better memory utilization and increasing the cache hit rates
while achieving load balancing among servers. Experimental results of practical implementation on Linux
show that LVS-CAD/FC is efficient and scales well. Besides, LVS-CAD/FC with the proposed policies can

Content-aware web switch
Content-blind web switch
Persistent connection

achieve 66.89% better performance than the Linux Virtual Server with a content-blind web switch.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

To deal with the explosive growth of the World Wide Web, the
cluster-based web systems have been widely adopted to handle
large amount of HTTP request efficiently. A cluster-based web ser-
ver system (briefly, web cluster) consists of multiple web servers
connected by a high-speed LAN. It employs a web switch also
called front-end which distributes requests from clients among
the request-handling servers also called back-ends to achieve load
sharing and scalability.

The front-end of a web cluster could be classified as a layer-4 or
layer-7 web switch according to the OSI layer at which the distri-
bution decision is made (Cardellini et al., 2002). The layer-4 web
switch dispatches the requests according to the IP address and
TCP port, whereas the layer-7 web switch can perform content-
aware request dispatching, dispatching the requests in accordance
with the content (i.e. URI) examined from the requested packets.

In recent years, many studies (Andreolini et al., 2003; Aron
et al., 1999, 2000a,b; Cardellini et al., 2002; Casalicchio and Colaj-
anni, 2001; Cherkasova and Karlsson, 2001; Lin et al., 2003; Liu
et al., 2007; Pai et al., 1998; Park et al., 2001; Sit et al., 2004; Wang,
2004; Yang and Luo, 1999; Zhang et al., 1999a,b) have focused on
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content-aware dispatching. Their works all demonstrate that using
the content of requests and loading information, more intelligent
request distribution algorithms such as improving disk cache hit
rates can be developed. As a result, web clusters are more efficient
in handling all types of requests. Moreover, with content-aware
dispatching, partitioning web contents, building specialized web
services among web servers, or maintaining session integrity can
be achieved.

However, to be able to perform content-aware dispatching, the
web switch should implement some mechanism such as TCP Splic-
ing (Maliz and Bhagwat, 1998) or TCP Handoff (Pai et al., 1998). In
our previous study, we also proposed the TCP Rebuilding (Liu et al.,
2007), a light-weight TCP connection transfer mechanism that en-
ables a web cluster to be content-aware. Since the HTTP request
(i.e. GET URL) is sent after the TCP connection is established, the
front-end must first establish a connection with the client before
any distribution decision can be made. The TCP Rebuilding allows
the front-end to transfer an established connection with a client to
a chosen back-end by rebuilding the TCP connection in the back-
end. After the TCP connection has been rebuilt, the chosen back-
end could respond to the request of the client directly, bypassing
the front-end. In particular, TCP Rebuilding could rebuild the TCP
connection at one back-end using only the original HTTP request
packet and no extra packets for connection transfer are required.
Therefore, TCP Rebuilding is adopted to construct the content-
aware platform in this research.
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Basing on our prior work (Lin et al., 2005), we have imple-
mented a high-performance and scalable web cluster named
LVS-CAD/FC (i.e. LVS with Content-Aware Dispatching and File
Caching). The LVS-CAD/FC cluster implements a kernel-level one-
way layer-7 web switch based on the TCP Rebuilding mechanism
to perform content-aware dispatching and implements a file-based
web cache that uses a small amount of memory dedicated to cache
a small set of most frequently accessed files in servers. A light-
weight method is then developed to efficiently redirect requests
from clients to this file-based cache. To efficiently support HTTP/
1.1 (Fielding et al., 1999) persistent connection, the fast Multiple
TCP Rebuilding is implemented.

In this paper, we further propose new content-based workload-
aware request distribution policies, which take into account the
content in requests and workload characterization in distributing
requests. Basically, a specific web request can be served by one
of a certain amount of servers according to the designated request
scheduling algorithm, whereas, the server set may be different for
each request. The servers’ file-based caches are organized in spe-
cific ways based on the workload characterization according to
the proposed policies. Especially, frequently accessed web pages
can be served by more web servers. Our main goals are to obtain
better memory utilization and increase the cache hit rates in web
servers while achieving load balancing. Consequently, disk swap-
ping times and disk I/O times can be reduced, and cluster perfor-
mance can be improved as well.

Experimental results of practical implementation on Linux
show that LVS-CAD/FC is efficient and scales well. Moreover,
performance evaluation with real-world traces (Internet, 2000)
demonstrates that LVS-CAD/FC with the proposed request distribu-
tion policies can achieve 66.89% better performance than the layer-
4 LVS web cluster (Linux, 2006).

The rest of this paper is organized as follows. Section 2 intro-
duces briefly the background technologies and related works. The
design and implementation of our LVS-CAD/FC is described in Sec-
tion 3. The proposed content-based workload-aware request distri-
bution policies are presented in Section 4. Section 5 presents the
experimental results. We conclude in Section 6.

2. Background and related works

This section begins with the introduction of the content-
blind dispatching platform - Linux Virtual Server. We then intro-
duce existent mechanisms for content-aware request distribu-
tion in Section 2.2. Section 2.3 describes the existent mechanisms
for dealing with HTTP/1.1 persistent connection in web clus-
ters. Existent content-aware request distribution policies are dis-
cussed in Section 2.4. Finally, Section 2.5 describes other related
works.

2.1. The content-blind dispatching platform - Linux Virtual Server

The Linux Virtual Server (LVS) (Linux, 2006; Zhang et al.,
1999a,b) is a highly scalable and available server built on a cluster
of servers. The architecture of LVS comprises a front-end server
(FE) and several back-end real servers (BEs). The FE is a load bal-
ancer responsible for dispatching and routing requests from clients
to the real servers. The BEs handle requests and respond to clients.
The cluster system is transparent to clients as a virtual service
using a single IP address.

LVS supports three routing mechanisms, namely Network Ad-
dress Translation (NAT), IP tunneling, and direct routing (Mack,
2003). Among them, the most efficient mechanism is direct rout-
ing. Fig. 1 shows the packet forwarding flow of LVS using direct
routing mechanism. The steps are described as follows. A client
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Fig. 1. Packet forwarding flow of LVS.

first sends a SYN packet to initiate a connection (Step 1). When
the FE receives the SYN packet, it will start the scheduling module
to select a BE, the SYN packet is then forwarded to the BE (Step 2).
When the selected BE receives the SYN packet, it responds to the
client with a SYN-ACK packet (Step 3). When the client receives
the SYN-ACK packet, it responds with an ACK packet to establish
a connection (Step 4). When the FE receives the ACK packet, it then
forwards the ACK packet to the previously selected BE. When the
BE receives the ACK packet, it changes its TCP state to the estab-
lished state. The three-way handshaking is now completed (Step
5). The client then sends the HTTP request to the FE. The FE then
forwards this HTTP request to the previously selected BE, and this
BE then responds with an ACK packet to the client (Steps 6-8). The
BE handles the request and forwards the requested data directly to
the client (Step 9). The client responds to the FE with an ACK pack-
et and the FE forwards the ACK packet to the previously chosen BE
(Steps 10 and 11).

Since the BE responsible for serving requests in one connection
is selected only when the FE receives a SYN packet for connection
establishment, so the FE in LVS is a content-blind load distributor
that cannot perform content-aware distribution.

2.2. Existent mechanisms for layer-7 web switch

In order for the front-end server to provide content-aware dis-
tribution, the request scheduling timing must be delayed until the
request packet containing the HTTP content is received. Therefore,
the front-end server must conduct TCP three-way handshaking
with clients. After receiving a HTTP request from a client, the
front-end server will schedule the packet and then transfer it to
the selected back-end server.

2.2.1. Two-way mechanisms for layer-7 web switch

TCP Gateway, TCP Splicing (Maliz and Bhagwat, 1998), and
Redirect Flows (Steven et al., 1999) belong to two-way mechanism
for content-aware request distribution. In the two-way architec-
ture, the response packets from back-end servers have to pass
through the front-end server, which might limit the performance
of the web cluster.

TCP Gateway should maintain two TCP connections for serving
requests, since a client must first establish a TCP connection with
the front-end server for sending out requests and the front-end
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server must establish another TCP connection with the chosen
back-end server to process the request from the client. Besides,
the front-end server processes the requests in the application layer,
which would incur a high cost for copying data between the kernel
and user space. In order to prevent such data copying, TCP Splicing
is designed to splice two TCP connections in the TCP layer, such
that all data are processed in the kernel and bypass the application
layer. However, the front-end server still has to maintain two TCP
connections in the same way as the TCP Gateway does. Moreover, a
two-way mechanism might cause the front-end server to become
the system bottleneck.

Redirect Flows is based on the NAT architecture. Through the
NAT mechanism (Mack, 2003), they need not maintain two TCP
connections. However, NAT is still a two-way mechanism and the
performance of the web cluster is limited by the NAT architecture.

2.2.2. One-way mechanisms for layer-7 web switch

TCP Handoff (Pai et al., 1998), One Packet TCP State Migration
(Lin et al., 2003), and TCP Rebuilding (Liu et al., 2007) belong to
one-way mechanism for content-aware request distribution. In
the one-way architecture, the response packets from back-end
servers can be sent directly to the clients, bypassing the front-
end server. This prevents the front-end server from becoming the
system bottleneck. However, the processing is more complicated
since in order for the back-end servers to respond directly to the
clients, the TCP state of the front-end must be migrated to back-
end servers, such that the back-end could send the requested
web page directly to the client, bypassing the front-end. Therefore,
one-way mechanism is more scalable than two-way mechanism.

TCP handoff works as follows. A client first initiates a connec-
tion with the front-end. When the front-end receives the HTTP re-
quest from the client, it migrates the TCP connection to the chosen
back-end using its own proprietary protocol. After the connection
is migrated, the back-end could process the HTTP request and for-
ward the data directly to the client. In order to transfer TCP con-
nection, besides the request packet itself, TCP handoff still needs
extra packet or state information for transferring state during
every handoff.

Instead of using custom protocol to transfer TCP connection
state, One Packet TCP State Migration uses the TCP information
in the original request packet to reconstruct the connection in
the back-end. This mechanism implements a packet filter in each
back-end server as the coordinator that maintains the TCP connec-
tion between the TCP module of back-end server and client. Be-
sides, this mechanism needs to spoof packets between the packet
filter and the TCP module on the back-end servers for three-way
handshake, and the packet filter has to process and modify every
inbound/outbound packets. These factors could affect the effi-
ciency of back-end servers.

TCP Rebuilding is an efficient technique proposed in our previ-
ous study; it also uses the TCP information in the original request
packet to rebuild the connection in the back-end. Especially, it does
not require overheads incurred by extra packets and processing of
packet filter for state transfer.

Fig. 2 (Liu et al., 2007) shows the packet forwarding steps. First,
the front-end performs the TCP three-way handshake with the cli-
ent and then forwards the HTTP request from the client to the cho-
sen back-end (Steps 1-4). When the back-end receives the HTTP
request, it rebuilds the TCP connection with the client using the
TCP Rebuilding technique. In particular, the TCP connection is re-
built without the packet filter needed in the One Packet TCP State
Migration technique (Step 5). After the connection has been re-
built, the back-end could forward the requested data to the client
directly (Steps 6 and 7). When the front-end receives the ACK pack-
et sent from the same client, it forwards the packet to the same
back-end (Steps 8 and 9).
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Fig. 2. Packet forwarding flow of TCP Rebuilding.

2.3. Existent mechanisms for handling HTTP/1.1 persistent connection

HTTP/1.1 persistent connection allows a client to send multiple
requests in a single connection to reduce the overheads due to set-
ting up and tearing down a TCP connection. However, it poses a
problem for the web cluster that employs the content-aware re-
quest distribution. The problem is that the multiple requests in
one connection may be scheduled to different back-ends. For
example, the front-end schedules request 1 to back-end 1, and
has connected to back-end 1. If the front-end schedules request 2
in the same connection to back-end 2, back-end 2 cannot process
request 2 immediately because back-end 2 does not have the
established TCP connection state. Therefore, the front-end should
migrate the TCP connection to back-end 2, and then disconnect it
with back-end 1.

Furthermore, if the web cluster partitions the web content
among the various back-ends, then certain requests could only
be served by certain back-end servers. In other words, one back-
end server could not serve all types of requests. When HTTP/1.1
persistent connection is applied, if all the requests in the same con-
nection are sent to the same back-end server, this would cause a
serious “404 object not found” error since a back-end could not
serve all the requests in a connection.
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Fig. 3. Mechanisms for handling HTTP/1.1 persistent connection.
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Aron et al. (1999) proposed the Multiple TCP Connection Hand-
off technique to deal with the HTTP/1.1 persistent connection
problem. As shown in Fig. 3a, Multiple Handoff allows the front-
end to migrate a connection between back-ends. Therefore, the
front-end could distribute the requests at the granularity of re-
quests. Like single TCP handoff, each handoff still needs extra cus-
tom packet to perform the TCP state migration.

Aron et al. (1999) also proposed another solution named back-
end request forwarding, back-end forwarding for short. The front-
end server is a layer-4 switch for distributing requests from clients.
As shown in Fig. 3b, when the connection-handling server does not
have the requested data, it would get the data from other servers
that have the requested data, and then forward the data back to
the client. This mechanism is easy to implement using Network
File System, but it would increase the latency time for request pro-
cessing and consume internal network bandwidth.

Sit et al. (2004) proposed a different mechanism named Multi-
ple Cloning, which could make multiple socket cloning between
back-ends. As Fig. 3c illustrates, when a back-end could not handle
arequest, it could migrate the connection to the back-end that has
the requested data using the Socket Cloning technique.

2.4. Existent content-aware request distribution policies

The content information embedded in the HTTP request packet
is helpful for developing more sophisticated dispatching policies.
The main idea of Client-aware Dispatching Policy (CAP) (Casalic-
chio and Colajanni, 2001) is to share all classes of services among
the back-ends. It classifies requests from clients into four classes,
namely normal, CPU-bound, disk-bound, and disk- and CPU-bound.
When a HTTP request packet arrives, the front-end parses the re-
quested URL and distinguishes which class it belongs to, and then
schedules the packet in this class with the Round-Robin algorithm.

The goals of Locality-aware Request Distribution (LARD) (Pai
et al., 1998) are to increase performance by improving the cache
hit ratio in back-end servers and achieving load balance. It logically
partitions the workload among the back-ends in order to optimize
the usage of the overall cluster RAM. Therefore, the requests for the
same web page will be distributed to the same back-end node that
most likely has the file cached in the main memory, unless the
back-end is overloaded.

Workload-aware Request Distribution Strategy (WARD) (Cher-
kasova and Karlsson, 2001) assigns a small set of most frequently
accessed files, namely core files, to be served locally by any back-
end nodes in the web cluster system, and partitions the rest of
the files, namely partition files, to be served by different back-
end nodes. The goal of WARD strategy is to minimize the forward-
ing overhead due to TCP handoff for the most frequently accessed
files. For example, if one back-end receives a request for a core file
or local partition file, it would process the request itself. On the
contrary, if the request is for a remote partition file, it would hand-
off this request to the designated back-end, and that back-end
would process the request and respond to the client.

2.5. Other related works

Yang and Luo (1999) proposed a cluster architecture that uses a
two-way layer-7 front-end for dispatching requests in Linux. To
transfer TCP connections efficiently, the front-end pre-forks a
number of TCP connections to each server and these pre-forked
connections will be bounded to user connections for connection
transfer. Based on this architecture, URL Formalization was pro-
posed to effectively support request distribution and the reliability
issue is discussed in their later work (Yang and Luo, 2001). HACC
proposed by Zhang et al. (1999a,b) is also a two-way layer-7 clus-
ter architecture designed for locality enhancement and dynamic

load balancing. In a two-way cluster architecture, the inbound
and outbound packets of back-ends should be modified and passed
through the front-end, which would consume system resources of
the web cluster. Therefore, in the recent work of Luo et al. (2005),
they also work on the one-way layer-7 web switch.

Andreolini et al. (2003) proposed a cluster architecture that
uses the one-way layer-7 web switch based on the TCP Handoff ap-
proach, called ClubWeb-1w. They implemented a new communi-
cation protocol, i.e. THOP, in the standard TCP/IP stack in Linux
for TCP connection transfer. Additional packet transmission for
connection transfer is still needed. Their performance results dem-
onstrate that with careful design and implementation, a content-
aware web switch can be extremely scalable.

To support content-aware request distribution in LVS, Wang
(2004) has started the TCPHA (TCP HAndoff) project which is a sub-
project of LVS. It also implements a kernel-level one-way layer-7
front-end for Linux. It is based on TCP handoff, and TCP connection
state transfer is still needed between front-end and back-end dur-
ing TCP handoff processing. The packet routing technique used is IP
tunneling, which is less efficient than direct routing. Besides, ser-
vice partition is used such that each back-end is responsible for
dedicated service such as HTM server, GIF/JPG server, and DVD
server.

For scalability of content-aware request distribution in web
clusters, Aron et al. (2000a,b) proposed a cluster architecture, in
which the TCP connection establishment and handoff are distrib-
uted over all back-ends, rather than being centralized in the
front-end. Their architecture uses a layer-4 front-end for dispatch-
ing incoming requests to back-ends, in which the request dispatch-
ing policies do not consider the requested content. The chosen
back-end may forward the incoming request to another back-end
by handing off the connection using the TCP handoff protocol to
another back-end according to the requested content.

Sit et al. (2004) proposed Socket Cloning, which is a distinct
connection transfer mechanism in which the connection transfer
component is designed in the back-end nodes rather than in the
front-end. Their architecture uses a layer-4 front-end for dis-
patching incoming requests to back-ends. With Socket Cloning
technique, the back-end nodes could move an opened socket be-
tween the back-ends. For each Socket Cloning, the native socket
node (i.e. connection-handling back-end node) has to transfer an
extra socket cloning message for cloning a socket and forward
the ACK packet to the cloned socket node (request-handling
back-end node). These extra packet transfers would consume net-
work bandwidth. However, the back-ends can send response pack-
ets directly to clients.

Park et al. (2001) proposed the inter-backend prefetch algo-
rithms in web servers, in which each back-end node predicts the
next HTTP requests and prefetches the requested web objects from
local disks or other back-end nodes into server RAM. In this way,
most requested web objects are directly accessed from the back-
end node’s main memory rather than from its local disk or other
back-end nodes in the cluster. The performance of the web cluster
could thus be improved.

Content placement and resource management are also
important issues in designing web clusters. Our work can be en-
hanced by several studies to address these issues. For example,
Aron et al. (2000a,b) proposed the Cluster Reserves mechanism
for global resource management in cluster-based server systems.
Shen et al. (2002) designed an integrated resource management
framework for cluster-based services with service differentiation
support. Luo et al. (2002) presented a content management Sys-
tem for web clusters with layer-7 routing and content segrega-
tion on multiple nodes. Zhuge and Li (Zhuge, 2007; Zhuge and
Li, 2007) focus on the research of decentralized content
management.
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3. LVS-CAD/FC cluster with content-aware dispatching and file
caching

LVS-CAD/FC is a web cluster that can perform content-aware re-
quest distribution with file caching mechanism. It uses a kernel-le-
vel one-way layer-7 web switch to dispatch requests from clients
and prefetches a small set of most frequently accessed files into
server RAM to increase the performance of the whole web cluster.
With a kernel-level layer-7 front-end using effective content-based
request dispatching policies, the web cluster could achieve more
load-sharing than a layer-4 front-end or RR-DNS could. Web con-
tents are prefetched into servers’ file-based caches in RAM because
web requests tend to ask for a whole file, whereas the buffer cache
of a traditional file system caches the individual blocks of a file
rather than the whole file in the RAM. With the file prefetching
method, we could make sure that the whole file would be cached
in the RAM. Prefetching web contents could avoid data transferring
between RAM and disk for those prefetched files, thus reducing
disk access overhead. Besides, the size of the file-based cache
which affects how many files can be prefetched can be configured
by administrator.

The LVS-CAD/FC web cluster system employs various tech-
niques as follows. The TCP Rebuilding technique, a light-weight
connection transfer mechanism, is applied in our content-aware
dispatcher. The fast Multiple TCP Rebuilding, an efficient and ex-
tended version of TCP Rebuilding technique, is implemented to
efficiently support HTTP/1.1 persistent connection in the web clus-
ter. The CWARD/CR and CWARD/FR strategies described later in
Section 4 that achieve better memory usage and a high cache hit
ratio of the web cluster while balancing load among servers are
proposed and implemented. A light-weight method to redirect re-
quests from clients to cached files and a mechanism of prefetching
web contents into server RAM are implemented to reduce disk I/O
times.

Front-end Dispatcher Back-end Server

Application Layer Application Layer

HTTP Server
IPVSADM
TCP Layer
TCP Layer
TCP|Rebuilding Module
IP Layer IP Layer
LVS-CAD/FC Module
Packet

Physical and Data Link Layer Physical and Data Link Layer

Fig. 4. Kernel modules of LVS-CAD/FC.
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This section describes the implementation of our LVS-CAD/
FC cluster. Section 3.1 introduces the overview, architecture, and
operations of LVS-CAD/FC cluster. The light-weight request redi-
rection method for redirecting requests from clients to cached files
is described in Section 3.2. The fast Multiple TCP Rebuilding to pro-
vide efficient support for persistent connection is implemented
and described in Section 3.3.

3.1. Architecture and operations of LVS-CAD/FC web cluster

The LVS-CAD/FC web cluster, as shown in Fig. 4, requires the
operating system in the front-end to be configured with a loadable
LVS-CAD/FC kernel module and the TCP codes in the back-end
nodes to be customized with the TCP Rebuilding module.

The operations of LVS-CAD/FC are depicted in Fig. 5 and de-
scribed below.

1. The client first initiates a TCP connection with the front-
end and then sends the HTTP request to the front-end.

2. After the forward module of the front-end node receives
the request packet, it uses the client IP, client port, and
the protocol of this packet as the hash key, and then looks
up the connection table to verify if the connection has been
established.

3a.&4. If the connection is not established, the forward mod-

ule would then call the dispatcher module to schedule
the request packet using the designated request
scheduling algorithm. The request scheduling algo-
rithm is responsible for choosing one back-end from
the corresponding set of back-ends that may serve this
request according to the proposed content-based
workload-aware request distribution policies. In par-
ticular, the dispatcher module could use all request
scheduling algorithms provided in LVS. The dispatcher
module then updates the connection table with this
new connection, and then calls the LVS-CAD/FC
module.
3b. If the connection record of the request packet exists, the
forward module would start the LVS-CAD/FC module
directly, bypassing the dispatcher module.

5. The LVS-CAD/FC module looks up the URL table according
to the URL in the request packet, and then verifies if there
are back-ends having cached the requested file.

6. If no servers have cached the requested data, the request
packet would be forwarded to the chosen back-end with-
out modification. Otherwise, the URL of the request would
be modified to the corresponding path name where the
requested data or file is stored. Then, the LVS-CAD/FC mod-
ule would check if multiple handoff using the Multiple TCP

(s}
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ﬁ[ forward J¢___s[ connection table |
2

7
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Fig. 5. Operations of LVS-CAD/FC.
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Rebuilding technique is needed, such that the request
packet can be forwarded to the proper back-end that has
the requested data in RAM.

7. When the selected back-end node receives the request
packet, it would rebuild the connection using the TCP
Rebuilding technique.

8. After the web server receives the request packet, it
processes and generates the requested data, and then
responds directly to the client, bypassing the front-end.

3.2. Request redirection

We have implemented a simple and efficient request redirec-
tion technique to efficiently redirect the HTTP request to the
file-based cache in the main memory of back-end directly by mod-
ifying the URL, as shown in Fig. 6.

In each back-end, we use ramfs to preserve a certain amount of
memory as the file-based cache to store the most frequently ac-
cessed files inside. The URL table in the front-end records the cor-
responding information where files are located. When receiving a
request, the front-end would look up the URL table and check if
there are back-ends having cached the requested file. If true, it
would change the URL of this request for redirecting it to the
file-based cache in the memory of the proper back-end. The perfor-
mance of the caching system is thus improved.

3.3. The fast Multiple TCP Rebuilding

The TCP Rebuilding technique (Liu et al., 2007) allows the front-
end to transfer its TCP state of an established connection with a cli-
ent to a back-end node. After the TCP state has been transferred,
the chosen back-end could respond to the request of the client di-
rectly, bypassing the front-end node. To provide efficient support
for HTTP/1.1 persistent connection, the TCP Rebuilding technique
is extended to Multiple TCP Rebuilding, as shown in Fig. 7, by add-
ing the functionality in the front-end to migrate a connection be-
tween the back-end nodes. Thus, the different requests in the
same connection could be distributed to different back-end nodes
in the presence of persistent connection.

To allow Multiple TCP Rebuilding, the back-ends should be
installed with the TCP Rebuilding technique and the front-end
should be customized to have functionalities as follows. First of
all, the front-end should perform the content-aware distribution
at the granularity of individual requests. Second, if the subsequent
requests have been scheduled and then distributed to a different
back-end node, the front-end should disconnect the previous
connection.

In order to increase the performance of migrating a connection,
we have implemented the fast Multiple TCP Rebuilding to generate
and send the RST packet for disconnection after handing off the re-

GET /CACH/index.htm HTTP/1.1

s> Request Back-ends

<+—— Response Front-end \‘
Client A A\

Fig. 7. Multiple TCP Rebuilding.

quest to the different back-end as shown in Fig. 8b, rather than
generating and sending it before handing off the request to the dif-
ferent back-end as shown in Fig. 8a. The data flow of Fig. 8b is de-
scribed as follows:

1-3: The front-end performs the three-way handshaking with
the client.

4: After receiving the request packet, the front-end will call
the dispatcher module to select a back-end server using
the designated request scheduling algorithm according
to the proposed content-based workload-aware request
distribution policies and then forward the request to the
chosen back-end.

5-6: When the selected back-end receives the request, it will
rebuild the connection with the client using the TCP
Rebuilding technique, process the request, and finally for-
ward the data back to the client directly, bypassing the
front-end.

7-8: While the front-end receives the ACK packet from the cli-
ent, it will forward the packet to the chosen back-end
immediately.
When the front-end receives the subsequent request from
the same connection, if it decides to distribute the request
to another back-end, it then hands off the request to back-
end 2 using Multiple TCP Rebuilding technique. After the
connection is rebuilt in back-end 2, a RST packet is gener-
ated and sent to back-end 1 to disconnect the obsolete
connection.

After back-end 2 rebuilds the connection with the client, it

would respond to the client directly and the subsequent

packets would be forwarded to back-end 2.

9-11:

12-14:

The Multiple TCP Rebuilding incurs the cost including the over-
heads for the front-end to generate a RST packet to disconnect with
the precious back-end server and modify the proper connection re-
cord, for back-end 1 to tear down the connection when it receives
the generated RST packet, and for back-end 2 to rebuild the con-
nection with the client using the TCP Rebuilding technique. Be-
cause of these overheads, Multiple TCP Rebuilding should be
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Fig. 6. Request redirection.
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Fig. 8. Packet forwarding flow of multiple TCP Rebuilding.

used only when it is beneficial, in this case, for improving the cache
hit ratio.

4. Proposed content-based workload-aware request
distribution policies

4.1. Motivation

Several studies (Andreolini et al, 2003; Aron et al, 1999,
2000a,b; Cardellini et al., 2002; Casalicchio and Colajanni, 2001;
Cherkasova and Karlsson, 2001; Lin et al., 2003; Liu et al., 2007;
Pai et al., 1998; Park et al., 2001; Sit et al., 2004; Wang, 2004; Yang
and Luo, 1999; Zhang et al., 1999a,b) have shown that content-
aware request distribution that takes content in requests into ac-
count when dispatching requests can achieve more effective re-
source utilization of web cluster. In fact, being aware of workload
information also helps request dispatching (Arlitt and Williamson,
1997; Cherkasova and Karlsson, 2001; Markatos, 1996).

In Arlitt and Williamson’s study (1997) of web server workload,
they identified 10 common characteristics in their collected data
sets. One important characteristic is the high concentration of ref-
erences in the web server. In their study, caching 10% of the most
frequently accessed files consumed only 6-45 MB main memory
size, and 80-96% cache hit ratio could be achieved. Markatos also
obtained similar findings in his study (Markatos, 1996). Moreover,
he noticed another interesting trace characteristic: small docu-
ments tend to be accessed much more frequently than larger doc-
uments. The above two studies conclude that caching a small set of
most frequently accessed files may substantially increase the ser-
ver's cache hit ratio at the cost of only a small amount of main
memory size.

WARD strategy (Cherkasova and Karlsson, 2001) also takes
advantage of workload characterization that assigns the most fre-
quently accessed files to be served by each back-end node locally
to minimize the forwarding overhead incurred from TCP handoff
for those most frequently accessed files. Since the workload char-
acterization of web traffic influences significantly the performance
of web service, workload characterization should thus be taken
into consideration when designing a web cluster.

Since in a web cluster all requests from clients are sent to the
front-end, if the front-end is content-aware and is able to examine
the content of HTTP request, it can easily collect the reference
information and identify the most frequently accessed web files,
and then decide the set of back-ends that are suitable for serving
the request.

Due to these considerations, we propose and present new Con-
tent-based and Workload-aware Request Distribution policies,
named CWARD/CR and CWARD/FR. Both strategies take content
of request and workload characteristic into account in dispatching
requests. For these two policies, the accessed web files with high
reference count are prefetched into servers’ file-based cache in
memory. Basically, the files with more access frequencies would
be duplicated in more servers’ RAM, whereas, the duplication
methods as described in Sections 4.2 and 4.3 are different for these
two policies. The common goals are to achieve better memory uti-
lization and better cache hit rates in servers while achieving better
load balancing among servers. Therefore, in LVS-CAD/FC cluster,
the front-end examines the content of request (i.e. URI) and ana-
lyzes workload characterization according to the proposed policies
in dispatching requests from clients to servers.

Since access frequencies of web files are changing all the time,
the file-based caches in servers’ RAM should be updated to react
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to the changes. In LVS-CAD/FC, the file-based caches are updated
according to the proposed CWARD/CR or CWARD/FR policies when
the system is idle or on a daily basis. The overheads incurred from
prefetching the distinct web files are expected to be small because
previous research (Arlitt and Williamson, 1997) shows that the dis-
tinct bytes of the requested data in the period of a day are small in
most traces.

4.2. Content-based workload-aware request distribution with core
replication - CWARD/CR

The proposed CWARD/CR (i.e. CWARD with Core Replication)
policy is shown in Fig. 9. Similar to the WARD strategy, we identify
a small set of most frequently accessed files, named core, and a set
of less frequently accessed files to be partitioned among back-ends,
called part. Each back-end prefetches identical core files and the
exclusive part files in the RAM. The content-aware dispatcher
examines the content information (i.e. URI) in each request. If the
request belongs to the cached files (i.e. core or part files), the URI
in the content of request packet is modified to correspond with

Client

the path where the target cached file is stored. Then the dispatcher
forwards the request to the corresponding back-end node.

The CWARD/CR policy works as follows. First of all, the core files
and part files are prefetched into RAM of back-ends, and the URL ta-
ble in the front-end is then updated with the corresponding infor-
mation. When receiving a sequence of requests, the front-end will
examine the content of each request. If the requested web file be-
longs to the core set, for example, Target A in Fig. 9, the front-end
will choose a back-end according to the designated request sched-
uling algorithm and modify the URI in the content of the request
packet to correspond with the path where the target core file is
stored. If the requested web file belongs to the part set, the front-
end would change the URI in the content of the request packet to
correspond with the path where the target part file is stored, and
then check if this request packet needs to be handed off. If handoff
is needed, the front-end would then handoff the request to the
back-end that has the requested data. Lastly, if the requested web
file belongs neither to the core set nor the part set, the front-end
forwards the request to the chosen back-end according to the as-
signed request scheduling algorithm without packet modification.
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4.3. Content-based workload-aware request distribution with
frequency-based replication - CWARD/FR

The proposed CWARD/FR (i.e. CWARD with Frequency-based
Replication) policy is shown in Fig. 10. Similar to the CWARD/CR
strategy as described in Section 4.2, a small set of frequently ac-
cessed files are prefetched into back-end nodes. The difference is
that the most frequently accessed files are replicated in the most
of back-ends, whereas, the lesser frequently accessed files are rep-
licated in the lesser amount of back-ends. The basic idea is to let
files be cached in back-ends according to their access frequencies,
such that the more frequently files are accessed, the more back-
ends can be selected to serve these frequently accessed files.

Since CWARD/FR takes workload properties into account,
CWARD/FR policy first determines the number of back-ends that
can be selected to serve a specific web file using the following
formula:

AccessFrequencyi

max{AccessFrequencyili = 1..n} » TotalNumOfServers (1)

The AccessFrequency; denotes the number of times the specific web
file i was accessed during a period. In our experiments presented la-
ter in Section 5.4, the value of AccessFrequency is normalized by the
log1o function. We use the maximum frequency among all accessed
files as the denominator instead of using the summation of the fre-
quency times of accessed files as the denominator. This is because
we want the web files with the highest access frequencies can be
cached in each back-ends’ file-based cache, such that the hottest
web files can be served by the most of back-ends. After the number
of back-ends that can be selected to serve a specific web file is
determined, then the front-end uses the Round-Robin manner to as-
sign a set of back-ends for caching this web file. The content-aware
dispatcher examines the content information (i.e. URI) in each re-

Table 1
Hardware/software environment
Front-end Back-end Client
Processor (MHz) Intel P4 3.4G Intel P4 2.4G
Memory ( MB) DDR 256 DDR 256/128 DDR 256
NIC (Mbps) Intel Pro 100/1000 Reltek RTL8139
oS Red Hat Linux 8.0 Windows XP/Red Hat
Linux 8.0
Kernel 2418 SP1/2.4.18-14
IPVS 1.04 X X
Web server X Apache 2.0.40 X
Benchmark X WebBench 5.0/http_load
The NASA Trace
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quest. If the request belongs to the cached files, the URI in the con-
tent of request packet is modified to correspond with the path
where the target cached file is stored. Then the dispatcher forwards
the request to the selected back-end node according to the desig-
nated request scheduling algorithm.

For example, targets A-D in Fig. 10 are frequently accessed files,
so they are prefetched into the server RAM according to formula 1.
Among them, Target A is the hottest one, so it is prefetched into
each back-end’s file cache. Because of the difference of access fre-
quencies, the amount of replication of these frequently accessed
files is different. So the goals of CWARD/FR are to achieve better
load balancing among back-ends and better memory utilization
than CWARD/CR does while increasing cache hit rates of back-
ends.

When the front-end receives a sequence of requests, it will
examine the content of the HTTP request. If the requested content
belongs to the web file prefetched, e.g. the target A in Fig. 10, the
front-end will modify the URI in the content of the HTTP request
to appropriate path for redirecting the HTTP request to the desig-
nated back-end’s file cache according to the designated request
scheduling algorithm. Whereas, if the requested content is not pre-
fetched, e.g., the target E or F in Fig. 10, the front-end routes the
HTTP request to the chosen back-end according to the designated
request scheduling algorithm without packet modification.

5. Performance evaluation

In this section, we present performance evaluation of our pro-
posed web cluster system. Section 5.1 provides the software and
hardware configuration of our experimental environment. Section
5.2 describes the two real-world traces used in our experiments.
Section 5.3 presents the evaluation of overheads caused by our sys-
tem. The results show that our content-aware request distribution
incurs only little overhead to the web cluster. Finally, Section 5.4
presents the experimental results with trace-driven benchmarking.

5.1. Experimental environment

Our test bed consists of one front-end node, eight back-end
nodes, and 10 clients, connected to a single 24-port fast-Ethernet
switch. The environment is a stand-alone local area network with
no disturbance from external network traffic. The packet forward-
ing mechanism is set to be direct routing (Mack, 2003) and the re-
quest scheduling algorithm is set to be Weighted Round-Robin
(WRR) (Linux, 2006; Zhang et al., 1999a,b). Table 1 lists the hard-
ware/software components.

The ClarkNet Trace
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Fig. 11. Locality of references.
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The benchmarks used for measuring the performance of web
servers are WebBench (2005) and Http_load (2006). WebBench
has two components: a controller and clients. The controller con-
trols clients for proposing requests, recording and summarizing
the experimental data. It calculates two overall server scores: re-
quests per second and throughput in bytes per second. The
http_load is employed to test the throughput of a web server. In or-
der to perform trace-driven benchmarking, we modify it to replay
the log in trace in order, instead of randomly. Moreover, because
there are 10 clients in our test bed, we split the log into 10 parts
in the Round-Robin manner, with each part for a single client.

5.2. Access logs
We use two publicly available traces from the Internet Traffic

Archive (Internet, 2000), namely traces of NASA Kennedy Space
Center and ClarkNet web servers. The working sets used in this re-
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search are derived from these two logs. The NASA trace contains
3,092,291 successful requests in the two-month period and a total
of 62,483 MB bytes were transferred (Arlitt and Williamson, 1997).
This trace needs 40 MB main memory size to achieve 96% cache hit
ratio. Moreover, the size of the data set derived is 245 MB. The
ClarkNet trace spanned two weeks, during which there were
2,940,873 successful requests and a total of 27,592 MB bytes were
transferred. It requires 34 MB main memory size to achieve 90%
cache hit ratio. The size of the data set derived is 467 MB.

Fig. 11 shows the cumulative distribution of request frequency
and size for NASA and ClarkNet traces. The files were sorted in
decreasing order of request frequency.

5.3. Overhead evaluation of the front-end

In this experiment, we set up the WebBench to repeatedly re-
quest the same web page of a given size in order to measure the
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Fig. 12. Experimental results of overhead evaluation.
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overheads incurred by our proposed system. The requested web
pages are of 1 KB, 6 KB and 13 KB, respectively. The 1 KB web page
is chosen because the entire HTTP response could be transferred in
a single Ethernet frame. The 6 KB and 13 KB web pages are chosen
because their sizes correspond to the average HTTP transfer sizes
reported in the literature (Arlitt and Williamson, 1997). The num-
ber of back-ends ranges from one to eight.

We do not set up the LVS-CAD/FC to prefetch the target web
page into RAM in this experiment, since our purpose is to investi-
gate the additional overheads caused by this content-aware dis-
patching web system as compared with a content-blind web
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system. The additional overheads would include examining the
URL, looking up the URL table, and modifying the URL. The con-
tent-blind web cluster system, LVS, is used for comparison.

As shown in Fig. 12, the LVS-CAD/FC cluster scales as well as the
LVS cluster. The overheads incurred by our content-aware web
cluster, LVS-CAD/FC, only degrade performance slightly. LVS-
CAD/FC performs only 3.2% less than the LVS in the 1 KB experi-
ment, 3.5% less in the 6 KB experiment, and 0.3% less in the
13 KB experiment.

Fig. 13 compares the CPU idle time between the content-aware
front-end of the LVS-CAD/FC and the content-blind front-end of

Front-end Idle During Benchmarking (1KB requests)
100

95
90
85 [YEE PRt S K Y
80
75
20
65
60

CPU Idle (%)

LVS ——
LVSI—CAD/FC ——

0 100 200 300

Time (sec)

400 500

(b) Dispatching among 8 back-end nodes

Fig. 13. Front-end idle time during benchmarking.
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LVS. The result shows that the front-end nodes of these two sys-
tems are far from being a system bottleneck, and the content-
aware front-end of our LVS-CAD/FC consumes only a little more
CPU computation than the content-blind front-end of LVS.

From the above experiments, we can conclude that LVS-CAD/FC
platform is efficient and its performance is comparable with that of
the content-blind LVS. However, LVS-CAD/FC is further capable of
performing content-aware request dispatching. Therefore, more
intelligent policies for improving cluster performance can be
applied.

5.4. Trace-driven benchmarking

We evaluate our LVS-CAD/FC cluster with the proposed con-
tent-based workload-aware request distribution policies. The
benchmark used is http_load and two realistic workloads derived
from the logs of NASA and ClarkNet are used. Eight back-end nodes
are used and each back-end node is configured with 128 MB RAM
in the experiments with NASA trace while configured with 256 MB
RAM in the experiments with ClarkNet trace.

Sections 5.4.1 and 5.4.2 presents performance results obtained
with our LVS-CAD/FC cluster and the proposed CWARD/FR and
CWARD/CR policies. Section 5.4.3 presents the scalability test and
the results demonstrate that our LVS-CAD/FC cluster scales well
and outperforms the LVS web cluster with a layer-4 dispatcher.

5.4.1. Experimental results of CWARD/CR

Figs. 14 and 15 show the results of trace-driven benchmarking
with CWARD/CR policy and the throughput speedup over the base-
line LVS is measured. The x%/y% (core%/part%) means that the core
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set (i.e. the most frequently accessed files) has x% of the working
set files, and the part set (i.e. the less frequently accessed files) in
each node also has y% of the working set files. In addition, LVS-
CAD/FC (CWARD/CR") means that the LVS-CAD/FC platform adopts
the WARD-like strategy, and LVS-CAD/FC (CWARD/CR) means that
the LVS-CAD/FC platform adopts the CWARD/CR policy. The differ-
ence between LVS-CAD/FC (CWARD/CR) and LVS-CAD/FC (CWARD/
CR") is that each back-end using CWARD/CR has prefetched about
(x +y)% of the working set files into the file-based cache in the
RAM, but the back-end using CWARD/CR" has not. In other words,
though back-ends using CWARD/CR" do not prefetch web files into
RAM, the front-end still dispatches requests belonging to core set
to one of the back-ends according to the designated request sched-
uling algorithm, and dispatches requests belonging to part set to
the pre-assigned back-end.

Fig. 14 shows that LVS-CAD/FC (CWARD/CR") outperforms LVS
by 2.03-18.7% and 8.28-21.19% respectively in the NASA trace
and ClarkNet trace among different combinations of core and part
sets. These results demonstrate that even without prefetching,
with effective request distribution policy, web cluster can make
use of limited RAM more effectively. Because disk I/Os is reduced,
performance is thus improved.

Fig. 15 shows that with prefetching, performance can be further
improved since disk I/Os are further reduced. LVS-CAD/FC
(CWARD/CR) outperforms LVS by 13.41-24.39% and 47.68-
66.89% in the NASA trace and ClarkNet trace, respectively. These
results also show that when only about 15% of working set files
(i.e. about 36.8 MB in NASA trace and 70 MB in ClarkNet trace)
are prefetched into each back-end’s cache, performance can be im-
proved by 24% in NASA trace and 55% in ClarkNet trace.
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5.4.2. Performance comparison of various request distribution policies

Fig. 16 shows the results of comparing various request distribu-
tion policies. In this experiment, CWARD/CR and CWARD/CR" use
12%/11% combination of the core and part sets. That is, back-ends
using CWARD/CR have prefetched about 23% of the working set
files (i.e. about 56.4 MB in NASA trace and 107.4 MB in ClarkNet
trace) into RAM. In addition, the difference between CWARD/FR
and CWARD/FR" is only that back-ends using CWARD/FR" do not
prefetch web files into RAM. The results show that LVS-CAD/FC
(CWARD/FR) has the best performance. In Fig. 16a, though back-
ends of LVS-CAD/FC using CWARD/FR and CWARD/CR strategies
prefetch similar size of web files (i.e. about 56.4 MB) into file
cache, LVS-CAD/FC (CWARD/FR) outperforms LVS and LVS-CAD/
FC (CWARD/CR) by 36.18% and 10.2% respectively in the NASA
trace. Even without prefetching, LVS-CAD/FC (CWARD/FR") still
outperforms LVS and LVS-CAD/FC (CWARD/CR’) by 19.92% and
5.73%, respectively.

In Fig. 16b, LVS-CAD/FC (CWARD/FR) outperforms LVS by
65.89% in the ClarkNet trace. In this experiment, though LVS-
CAD/FC (CWARD/FR) and LVS-CAD/FC (CWARD/CR) have similar
performance, however, back-ends of LVS-CAD/FC using CWARD/
FR strategy prefetch about 37% less of web files (i.e. about
67.7 MB) into file cache than using CWARD/CR strategy. Even with-
out prefetching, LVS-CAD/FC (CWARD/FR") still outperforms LVS by
16.23%.

In summary, these results demonstrate that with the effective
request distribution policies such as WARD and CWARD (i.e.

CWARD/CR" and CWARD/FR"), the web cluster with content-aware
request distribution can effectively outperform the web cluster
with content-blind request distribution. Prefetching files into
cache as done in CWARD/CR and CWARD/FR, which effectively
reduces disk I/Os, can further greatly improve web cluster
performance.

Besides, these results also demonstrate that CWARD/FR per-
forms much better than CWARD/CR and prefetches significantly
less amount of web files into the file-based cache. This is because
in CWARD/FR, the most frequently accessed files cached in back-
ends are set according to their access frequencies instead of being
cached in each back-end, such that CWARD/FR can make use of
RAM more effectively than CWARD/CR or WARD-like policy does
while achieving better load balance and better cache hit rates of
back-ends.

5.4.3. Scalability analysis

In this experiment, we evaluate the scalability of our LVS-CAD/
FC system with the proposed CWARD/FR content-aware request
distribution policy. Each back-end using CWARD/FR has prefetched
about 23% of the working set files (i.e. about 56.4 MB) in NASA
trace and about 14.5% of the working set files (i.e. about
67.7 MB) in ClarkNet trace into RAM. The benchmark used is
http_load and the number of back-ends ranges from one to eight.
Fig. 17 shows that LVS-CAD/FC scales well and outperforms LVS
by 36.18% in the NASA trace and 65.89% in the ClarkNet trace when
the number of back-ends is eight.
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Fig. 16. Performance of various request distribution policies.
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Fig. 17. Scalability test.

6. Conclusion

Basing on our prior work (Lin et al., 2005), we have imple-
mented a high-performance and scalable content-based web clus-
ter named LVS-CAD/FC. The LVS-CAD/FC cluster implements a file-
based web cache to cache a small set of the most frequently ac-
cessed web files in RAM and implements a kernel-level content-
based front-end to distribute HTTP requests from clients among
back-end nodes. With one-way architecture, the back-ends can
send requested data directly back to clients, bypassing the front-
end. Besides, the fast Multiple TCP Rebuilding is implemented to
efficiently support persistent connection. Besides being a high-per-
formance web cluster, LVS-CAD/FC system can also serve as the re-
search platform for content-aware request distribution policies.

In this paper, we have proposed new policies, which consider
both the content of requests and workload characterization in dis-
patching requests for better memory utilization and increasing the
cache hit ratio and load sharing of the web cluster. For CWARD/CR,
the most frequently accessed files are cached in each back-end and
the less frequently accessed files are partitioned among back-ends
with the Round-Robin manner. For CWARD/FR, files cached in
back-ends are set according to their access frequencies, so that
the more frequently files are accessed, the more back-ends can
be selected to serve these frequently accessed files.

Experimental results of practical implementation on Linux
show that the LVS-CAD/FC cluster with the kernel-level one-way
content-based web switch is efficient and scales well. Moreover,
the trace-driven benchmarking with the working sets derived from
the logs of NASA and ClarkNet demonstrates that our LVS-CAD/FC
cluster with the proposed content-aware request distribution pol-
icies can achieve 36.18% and 66.89% better performance than the
layer-4 LVS web cluster respectively. Experimental results also
show that CWARD/FR substantially outperforms CWARD/CR since
CWARD/FR can utilize RAM more effectively and can achieve better
load balancing among back-ends than CWARD/CR does.

Further research is needed for optimizing the way of prefetch-
ing web pages in the server RAM. In addition, how to efficiently
prefetch dynamic web contents into server RAM is another issue
that needs to be investigated. Based on this platform, several issues
could also be further explored, such as cooperative caching, sup-
port of quality of service, and adaptive content-aware dispatching
algorithms.
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